Aplicações de funções quadraticas

    Na antena parabólica, o receptor é instalado em um ponto determinado foco, por onde todas as ondas eletromagnéticas refletidas pela antena passarão, resultando em um ganho na potência das ondas.

Ao lançar um objeto no espaço (dardo, pedra, tiro de canhão) visando alcançar a maior distância possível tanto na horizontal como na vertical, a curva descrita pelo objeto é aproximadamente uma parábola, se considerarmos que a resistência do ar não existe ou é pequena.
Sob estas circunstâncias o ângulo de maior alcance horizontal é de 45 graus.

As funções do segundo grau e suas respectivas parábolas são fundamentais nos estudos de balística, ciência que se ocupa do estudo do movimento de projéteis. Conhecidas as velocidades do projétil e o ângulo de elevação, é possível determinar a equação da trajetória que é um arco de parábola. Para uma distância dada, sempre existem dois ângulos de elevação, que enviarão um projétil ao lugar desejado. Na prática pode ser necessária a mais alta das duas trajetórias para superar um obstáculo, ou o menor deles a fim de se evitar os radares inimigos. A única exceção é o ângulo de 45º, com o qual atingimos o maior alcance possível.    

 Parábola é a figura geométrica que apresenta como uma das suas características o fato de refletir todos os raios que nela incidem para um único ponto, chamado de foco da parábola. Esta característica lhe confere muitas utilidades práticas, tais como a utilização da radiação solar para fins domésticos, por exemplo, para cozinhar alimentos. Para isso deve-se concentrar essa radiação em pequenas regiões, utilizando-se lentes ou espelhos. Os fogões solares utilizam espelhos parabólicos para a concentração do calor. Os raios solares incidem na superfície do espelho e ao se refletirem passam pelo foco do espelho. O calor concentrado neste ponto é suficiente para cozinhar alimentos.